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The aim of this study was to asses the applicability of LC-MS profiling to authenticate a selected Trappist

beer as part of a program on traceability funded by the European Commission. A total of 232 beers were

fingerprinted and classified through multivariate data analysis. The selected beer was clearly distin-

guished from beers of different brands, while only 3 samples (3.5% of the test set) were wrongly

classified when compared with other types of beer of the same Trappist brewery. The fingerprints were

further analyzed to extract the most discriminating variables, which proved to be sufficient for classifica-

tion, even using a simplified unsupervised model. This reduced fingerprint allowed us to study the

influence of batch-to-batch variability on the classification model. Our results can easily be applied to

different matrices and they confirmed the effectiveness of LC-MS profiling in combination with multivariate

data analysis for the characterization of food products.
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INTRODUCTION

The control of food products is an essential part of consumer
protection and represents an ongoing challenge for analytical
laboratories. It is also in the interest of the producers to defend
their products against low quality imitations or substitutes thatmay
cause unfair competitionwith the original brand. In this context, the
European Commission founded the project TRACE (http://www.
trace.eu.org). One of the objectives of TRACE was to develop
integrated traceability systems based on molecular fingerprints
obtained through different spectroscopic techniques. Unlike con-
ventional analytical approaches, fingerprintingmethods do not rely
on the detectionof a limited number of known compounds but use a
largenumberof chemical variables togenerate amolecular signature
used for classification purposes. Historically, trace elements and the
natural abundance of stable isotopes were used to control the geo-
graphical origin of food products (1-3). More recently, the un-
targeted detection of asmanymetabolites as possible (i.e., metabolic
profiles in the range from100 to1000Da,usually referred toas small
molecule profiles) has become a powerful tool for fingerprinting in
food science (4). A variety of techniques can be used to collect
metabolic profiles: for years, NuclearMagnetic Resonance (NMR)
was considered the leading technique because of its capacity to
obtain the simultaneous quantification of a number of compounds
and the simple requirements for sample preparation (5). In recent
years, ultrahigh pressure liquid chromatography (UPLC) coupled
withmass spectrometry (MS) has gained importance as a technique

for collecting metabolic profiles, showing a higher sensitivity than
NMR (6). The analysis of the large data sets generated by LC-MS
requires data processing tools such as those based on multivariate
data analysis. These techniques are robust to noise andmissing data
and enable one to deal with correlated variables (7, 8).

One of the aims of TRACE was to assess the applicability of
metabolic fingerprinting and multivariate data analysis to guar-
antee the authenticity of the brand name of different food
products, among which is the Trappist beer, namely, Rochefort8.

Since medieval times, Trappist beers have been produced by
Cistercians monks, who used to sell the surplus production to cover
the subsistence fees of their abbeys. Even nowadays, Trappist beers
are produced for noncommercial purposes and are considered hand
crafted products brewed according to the traditionalmanufacturing
process. However, the mass-production of commercial, standard-
ized beers, known as Abbey beers, has emerged in the last decades.
The difference between these Abbey beers and the Trappist beers
became less evident to the consumer since commercial breweries had
licensed the nameof existing abbeys or used advertizing suggesting a
monastic origin (9). To counter this competitive threat, the appella-
tion of origin “Authentic Trappist Product” was created in 1997
(http://www.trappist.com). In the beginning, only six abbeys could
use this label. These were Orval, Chimay, Rochefort, Westmalle,
Westvleteren (in Belgium), and La Trappe (in The Netherlands).
Achel (Belgium) was added in 1999. The Rochefort brewery is
located inside the Abbey of Notre-Dame de Saint-Remy and
produces three types of beer, called simply as 6, 8, and 10. These
beers should be brewed following the same recipe, the only differ-
ence being the fermentation periodwhich results in different alcohol
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contents for the three different beers. The brewery remains closed to
the public, and the manufacturing process is kept secret and is
strictly hand crafted. The only thing knownabout the process is that
thewater is drawn fromawell locatedwithin themonastery and that
unmalted sugar is added (http://www.abbaye-rochefort.be).

Only few studies have been carried out using fingerprinting
techniques for the characterization of beers. NMR and principal
component analysis (PCA) were used to uncover batch-to-batch
variability between samples of a single commercial brand (10) or
to group samples according to some major characteristics (e.g.,
the use of barley or wheat, ales or lager color, brewing sites, or
deterioration) (11,12). The results obtained encouraged the use of
PCA of NMR fingerprints for quality control issues. The use
of MS for untargeted fingerprinting of beer is more limited, and
only one study on this argument has been reported (13). In that
study, 25 beer samples and 4 samples of an artificially sweetened
Brazilian beer were analyzed by direct injection in a Quadrupole-
Time of Flight (Q-TOF) analyzer. PCA showed clustering of
samples in 3 major groups: pale colored, dark colored, and malt
beers. The most intense and indicative signals were identified and
arose from ionization of simple sugars, oligosaccharides, and iso-
R-acids. Another attempt to use MS for the characterization of
beer was made by the group of Obruca and co-workers who tried
to assess the authenticity of Czech beer by analyzing a subset of
phenolics (14). In that preliminary study, 7 different beers were
investigated, and they found that some individual phenolics are
qualitatively present/absent in Czech beer, suggesting the use of
these compounds as markers of authenticity.

These studies indicated that metabolic profiles of beer should
contain enough information for the classification of samples, at
least according to some major features, such as the color or the
geographical origin. Liquid chromatography and ion spray
ionization allow the analysis of the nonvolatile fraction of small
organic compounds (up to 1000 Da) of beer. This fraction is
mainly constituted by metabolites produced during fermentation
and by the slight portion of soluble additives possibly introduced
during manufacturing. Volatile flavors represent another class of
compounds useful for beer fingerprinting. Recently, headspace
solid-phase microextraction coupled to gas chromatography
mass spectrometry has been successfully applied to analyze beer
volatiles for classification purposes (15).

In the present article, as part of the TRACE project, we tested
the possibility of using multivariate data analysis of metabolic
profiles collected by LC-MS to authenticate a specific type/brand
of Trappist beer and to produce an efficient classifier capable of
discriminating the selected beer from similar samples of other
Trappist and Abbey brands.

MATERIALS AND METHODS

Samples, Sample Preparation, and Chemicals. A total of 232
commercial bottles of beer, representative of the Rochefort, Trappist,
and Abbey productions, were sampled and purchased by the Walloon
Agricultural Research Centre (CRA-W, Gembloux, Belgique) in two
different sessions more than one year apart. Beer samples were labeled
as follows: R8 (Rochefort8 samples), NR8 (samples among Rochefort6
and Rochefort10), and NR (Non-Rochefort samples). Overall, the NR
group included 15 different types of non-Rochefort Trappist beers, as well
as 37 types of Abbey beers. Both the batches contained bottles of each of
the three classes of beers (i.e., R8, NR8, and NR); the two batches of
bottles were independently collected, dispatched, and analyzed. The first
batch contained different samples of Rochefort beers (i.e., R8 þ NR8
samples) sampled simultaneously in the same period of the year; thus, they
are likely to belong to the same production. The second batch enclosed
Rochefort samples collected in different periods of the year (18 and 7
sampling sessions for the R8 and NR8, respectively), thus more represen-
tative of the batch-to-batch variability of this kind of hand crafted beers.

The composition of each batch is given inTable 1. Sulfadimetoxine and [5-
leucine] enkefaline analytical standard grade were provided by Fluka
Chemie (Buchs, Switzerland).

For each beer, an aliquot of approximately 3 mL was transferred in a
PTFE vial and stored open overnight at a temperature of 4 �C for initial
degassing. The day after, vials were sonicated for 1 min at maximum
intensity (FALC Ultrasonic water bath sonicator) for a complete degas-
sing, then 2 mL of each sample was filtered using an ISOLUTE 20 μm
polyethylene filtration plate (Biotage, Uppsala, Sweden) and immediately
analyzed.

Sample Analysis and Experimental Design. For each sample, 4 μL
was injected on a Waters Acquity UPLC system (Waters Corporation,
Milford,MA) using anAcquityHSST3 column (100mm� 2.1mm, 1.8 μm)
maintained at 60 �C. The chromatographic flow rate was 0.6 mL/min,
finally split 1:10 before being injected into the spectrometer. The mobile
phases were 0.1% formic acid in water (solvent A) and 0.1% formic acid
in methanol (solvent B). The total run time was 9.5 min. The starting
conditions were 98% of solvent A maintained for 1 min. Then, solvent B
was gradually increased from 2% to 25%over the first 3.5 min, from 25%
to 60% between 3.5 to 6.75 min, and from 60% to 95% between 6.75 and
7 min. Isocratic conditions with 95% of solvent B were maintained from
7.01 to 8 min, then the starting conditions were restored and maintained
from 8.01 to 9.5 min.

The chromatographic system was coupled to a Micromass Q-TOF
Premiermass spectrometer (Waters), equippedwith an electrospray source
and a lockspray interface. The instrument was tuned as follows: capillary,
3.5Kv; sampling cone, 40; extraction cone, 3; ion guide, 3; source tempera-
ture, 100 �C; desolvatation temperature, 200 �C; cone gas flow, 35 L/h;
desolvatation gas flow, 400 L/h; and collision gas flow, 0.3 mL/min. Mass
spectra were acquired over the mass range 50-1000 m/z in centroid, W
positive ionization mode. A solution of [5-Leucine] enkephaline 0.1 ng/μL
infused at 50 μL/min was used as the reference mass for accurate mass
measurements. The period over which the signals acquired by the detector
were summed to give a complete spectrum (scan time) was increased from
0.15 to 0.3 s from the first to the secondbatch of analysis. At the same time,
the number of scanned functions was decreased from two (with collision
energies of 5 and 30 eV) to one (with a collision energy of 5 eV), with an
interscan delay of 0.02 s for both the analytical sessions.

For each batch, three independent sample lists containing all the beer
samples in a randomized order and quality controls at regular intervals
were analyzed. Quality control consisted of two test samples: a solution
98/2 of water/acetonitrile containing 2 ng/μL of sulfadimetoxine and a
mixture of 9 samples representative of the three classes of beer. These
controls were used to validate the mass accuracy and retention times, as
well as to best tune the peak picking parameters.

Peak PickingMethod and Data Pretreatment. For each of the two
batches of analysis, raw LC-MS data of the three injections were pooled
together and analyzed throughMarkerLynxXS v4.1 SCN639 (Waters). This
software allowed for the so-called peak picking process, e.g., the creation of a
list of variables extracted from the raw chromatograms. Variables must be
present in at least two samples to be collected and are characterized by
retention time, m/z, and intensity. For both the batches of analysis, only
function 1 (e.g., the function with a collision energy of 5 eV) was considered.
Peak picking parameters were settled as follows: initial/final retention time,
0.00/7.50 min; low/high mass, 50/1000 Da; mass tolerance, 0.02 Da; peak
width at 5% height, 10 s; peak-to-peak baseline noise, 10; mass window,
0.04 Da; and retention time window, 0.2 min. Relative retention time and
noise elimination level were not used, while smoothing and deisotopization
processes were applied. To compensate for the different scan-time used in the
two batches of analysis, the intensity threshold was settled at 90 and 180
counts, respectively, in the first and second analytical sessions.

For each batch of analysis, the intensities of the extracted variables were
normalized dividing them by the sum of the intensities of the common

Table 1. Batch Composition in Terms of the Number of Bottles per Class

class batch I batch II

R8 16 30

NR8 11 17

NR 63 95

total 90 142
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variables (e.g., variables detected in all the samples), the so-called “total
useful MS signal” (16). Normalized variables were then averaged over the
three replicates. Following this procedure, two separate data sets were gene-
rated and individually investigated through multivariate data analysis.

Multivariate Data Analysis. Extracted variables were treated
throughmean centering andPareto scaling, and then analyzedbyprincipal
component analysis (PCA) and orthogonal projection to latent structures-
discriminant analysis (O2PLS-DA) (17). PCA was mainly used to have an
overview of the extracted data sets, while, for each batch of analysis, two
chainedO2PLS-DAmodels were used to generate the classifier. O2PLS-DA
models were built up using representative training sets selected with Onion
D-optimal design applied to the latent space spanned by the principal
components of two independent PCA models for Rochefort and NR
samples. O2PLS-DA models were built by variable selection performed
on the analogous’ PLS-DA models, considering only the variables having
values of the VIP parameter (18) greater than the threshold that allows the
maximum value of Q2. Each regression model was validated by a permuta-
tion test to exclude overfitting. Onion D-Optimal design was performed by
MODDE 8 (Umetrics AB, Ume

�
a, Sweden) and multivariate data analysis

by SIMCA Pþ12 (Umetrics). In order to introduce a probabilistic frame-
work for O2PLS-DA classification, a Naı̈ve Bayes classifier based on the
representation of the sample space obtained using the predictive score vector
was built by using WEKA 3.4.11 (University of Waikato, New Zealand).
This strategy prevented the use of empirical decision rules for the classifica-
tion of samples.

One of the advantages of O2PLS-DA models is that the information
relevant for the discrimination is collected in a limited number of predictive
components; when samples belong to two classes, simple models having
only one predictive component can be obtained and interpreted by using
the so-called S-plot (19). In these plots, the loading p representing the
magnitude of each variable is plotted against the correlation loading
p(corr), corresponding to its reliability. S-plots were used to interpret
models in terms of relevant measured variables; only variables having p
values considerably different from 0 and significant values of p(corr) were
considered important for the models. The standard error of p was
estimated by jack-knifing from all rounds of cross-validation, while a
permutation testwas applied inorder to estimate the level of significanceof
p(corr). The class index was randomly permutated to obtain completely
random classification models. Then, the distribution of the p(corr) values
for these random models was characterized to determine the level of
significance for different thresholds of p(corr). A value of 0.60 was

estimated to have a significance level of higher than 0.999 for all of the
O2PLS-DA models considered in this study.

RESULTS AND DISCUSSION

A total of 232 samples of beerwere dispatched and thus analyzed
during two different analytical sessions, more than one year apart.
Injections at regular intervals of a test sample containing sulfadi-
metoxine (isotopic [M þ H]þ ion at 311.0814) revealed a mass
accuracy of-1.66 and-2.03 ppm., and a shift in the retention time
in the range of 0.06 and 0.02 min, respectively, for the first and
second batches of analysis. Figure 1 shows the typical chromato-
graphic profiles of a test mix of 9 representative beers. Between the
two analytical sessions, the scan time was increased from 0.15 to
0.3 s, while the number of scanned functions was decreased from
two to one. These changes were introduced to increase the intensity
of the signals, maintaining the width of the chromatographic peaks
on an average of 20/25 scans at the base of the peak. As a result, the
better signal-to-noise ratio of the second batch of analysis improved
the reliability of the peak picking process and thus increased the
number of extracted variables. A total of 1255 and 1534 variables
were extracted from the first and the second batches, respectively.

The size of the two data sets confirmed that LC-MS was a
valuable technique to represent the complexity of the samples under
analysis. However, most of the variables brought nonpredictive
or orthogonal information with respect to the class separation
(structured noise) as shown by a preliminary PCA (Figure 2) and
then by the O2PLS-DAmodels. The overall variability was further
amplified by the heterogeneity of the NR group, which contained
different types of beers characterized by specific sets of variables.
For these reasons, an elevatednumber of principal componentswas
necessary in the PCAmodels to explain approximately 50% of the
variability. In detail, 4 and 6 principal components explained,
respectively, 52.3% and 57.5% of the total variance of the first
and second data sets.

Four of the samples under analysis belonged to a very parti-
cular, traditional Belgian beer (Geuze) produced by spontaneous
fermentation (i.e., using wild strains of yeasts and bacteria).

Figure 1. Typical chromatograms of the test mix sample injected at regular intervals in the first (panel A) and second (panel B) batches of analysis.
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Metabolic profiles of Geuze showed a series of distinctive com-
pounds; all of the four samples of this type of beer proved to be
strong outliers on the basis of the Hotelling’s T2 test (significance
of 0.95), and they were excluded for further investigations. As
shown in Figure 2, PCA was not sufficient to highlight a clear
separation between classes, whereas there is evidence of clustering
between NR and Rochefort beers when they are considered
together (i.e., R8 and NR8 samples). These observations sug-
gested that a classifier for R8 beer could be built up by combining
two chained O2PLS-DA models: the first level model to separate
NR beers and the second level model allowing the discrimination
of R8 samples within the restricted group of Rochefort beers.

For each batch, representative training sets of Rochefort and
NR samples were selected and used to generate the corresponding
O2PLS-DA models. Training sets of the first and the second
batches consisted of 55 (38NR, 9NR8, and 8R8) and 86 (57NR,
10 NR8, and 19 R8) samples, respectively. The complements of
the whole batches were considered as test sets. For each data set,
the features of the twoO2PLS-DAmodels thatwere used to build
up the classifier are reported in Table 2. No sample falls outside
the applicability domain of the classifiers. In the first and the
second batches of analysis, respectively, one and two samples of
the test sets, were wrongly predicted (Table 3), while all the
samples of the training sets were correctly classified.

The most relevant measured variables capable of distinguish-
ing Rochefort from NR beers were highlighted by S-plots
(Figure 3). No single relevant measured variable able to distin-
guishR8 from the other types ofRochefort beers (e.g., Rochefort6
and Rochefort10) was highlighted. Thus, the overall group of
Rochefort beers can be well defined by a few variables which
have the character of markers, while the different types of
Rochefort beers can be discriminated only on the basis of a
particular pattern ofmany variables (i.e., the whole fingerprint).

This observation was already evident from the scatter plot
reported in Figure 2, and it is likely to be the consequence of
the fact that all of the three different types of Rochefort beers are
brewed according to the same recipe.

A data integration approach based on O2PLS was used to
distinguish the part of the information useful to discriminate
Rochefort beers from that due to the batch-to-batch variability
observed for these hand crafted beers. A direct integration of the
two data sets was not possible because the composition of
samples, the scan-time parameter and the sets of variables used
for normalization, were different for the two analytical sessions.
Thus, relevant variables were selected for each single data set on
the basis of their influence in the O2PLS-DA models (absolute
value of p(corr) greater than 0.60). A total of 100 and 85 relevant
variables were extracted, respectively, from the first and second
batches. The use of the same chromatographic settings and the
level of accuracy and reproducibility of theLC-MS systemused in
this study allowed for the direct comparison of the m/z and
retention time values of the two different analytical sessions.
As result, a subset of the fingerprint composed of 27 common
relevant variables (i.e., variables with the parallel presence of
relevant signals in both data sets) was selected. For these vari-
ables, the median and the spread of distribution of the intensities
between Rochefort and NR beers are represented in Figure 4.
Quite large spreads of distributionwere observed, especially in the
second batch of analysis. For example, the variable with m/z
100.112 (one of the most relevant since it is present only in
Rochefort beers) has a relative spread of distribution of about
40% and 110% in the first and second batches, respectively. This
finding is probably due to the batch-to-batch variability of
Rochefort beers.

These 27 variables were used to create a simplified classifica-
tion model based on PCA. For each data set, the class of the
Rochefort beers was represented through the training set pre-
viously used for the corresponding O2PLS-DA model. Thus, all
of the samples were classified by analogy with these training sets

Figure 2. PCAscore scatter plots considering 140 samples (2 strong outliers
were removed before calculation) from the second batch of analysis: the
triangles represent NR samples; the gray dots the NR8 samples; and the
black diamonds the R8 samples. A similar representation (data not shown)
was obtained for the first batch of analysis.

Table 2. Features of the O2PLS-DA Models That Made up the Classifiers of
the Two Data Sets

batch I batch II

first model second model first model second model

principal components 1 1 1 1

orthogonal components 4 2 3 2

R2 0.98 0.92 0.97 0.80

Q2 0.89 0.79 0.90 0.49

Table 3. Confusion Matrix of the Beer Samples Belonging to the Test Sets of
Each Batch of Analysis

batch I batch II

class/class pred NR NR8 R8 NR NR8 R8

NR 23 0 0 36 0 0

NR8 0 2 0 0 7 0

R8 0 1 7 0 2 9

Figure 3. S-plot highlighting, in the gray boxes, themost relevant variables
in the Rochefort/NR O2PLS-DA model of the second data set. A similar
representation (data not shown)was obtained for the first batch of analysis.
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on the basis of the augmented distance tomodel (DModXþ) (18)
with a significance of 0.95. Graphical overviews of the results
were reported in Figure 5; all of the samples of the first data set
were classified correctly, even if two samples of the same brand of
Trappist beer were just above the threshold. In the second data
set, the prediction capability of the model appeared reduced.
Most of the NR samples were classified correctly, but for some of
them, the distance to the model was just above the threshold.
Furthermore, 4 samples of 2 different brands of NR Trappist
beers were predicted as Rochefort beer. The second data set is
likely to be affected by an increased variability within its training
set. This hypothesis is supported by the fact that the second batch
ofRochefort bottles have been collected in different periods of the
year, thus are more representative of the variability typical of
these hand crafted products. The classifier based on chained
O2PLS-DAmodels proved to be more robust with respect to this
effect. However, the fact that even the simplified PCA model
allowed an adequate classification of the samples, confirmed the
relevance of the 27 variables with respect to the problem under
analysis and the overall value of the approach here presented.

This reduced subset of measured variables was also used to
further analyze the influence of batch-to-batch variability on the
representation of the two data sets. Only those types of beers
analyzed in both the analytical sectionswere considered (i.e., bottles

with the same commercial label in the two data sets). The same
number of Rochefort samples (16 R8 and 11 NR8 samples) were
selected by D-Optimal design and PCA in each data set. Thus, two
reduced data sets composed of 27 common variables and 84
corresponding samples were obtained. The two data sets were
compared by O2PLS: the R8 samples and the NR8 samples were
permutated within their classes, and the consequent models were
analyzed to extract the common information.Most of thesemodels
showed a single parallel component and a single orthogonal
component for both batches of analysis. The score scatter plot
represented in Figure 6 shows that the common information is
represented by a single parallel latent variable responsible for the
discrimination of Rochefort beers. This variable accounts for
approximately 60% of the total variance into the data sets, while
20% of the variance is unique within each single data set. Ortho-
gonal components (the vertical axis in the plot in Figure 6) are
mainly due to the variability internal to each single batch of analysis
and are responsible for the observed different representations of the
two data sets. The study of the loadings corresponding to the
orthogonal and the parallel components (data not showed) con-
firmed that the most influential variables useful for discriminating
theRochefort beerswere the same for the twobatches. Our analysis
demonstrated that the batch-to-batch variation acts orthogonally
to the effects produced by the different types of beer.

Figure 4. Bars represent the median of the intensities between the group of Rochefort and NR for each of the 27 relevant variables in common to the first (A)
and the second (B) data sets. The spread of the distribution was represented by the 25th to the 75th percentile. The bar of the variable withm/z = 125.99 was
cut off because it was out of scale.
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Our results confirmed that LC-MS fingerprints and multi-
variate data analysis are valuable techniques for the characteriza-
tion and classification of beer and, in general, of complex
biological matrices which have an elevated batch-to-batch varia-
bility. The elevated number of variables and the presence of
structured noise required the use of supervised techniques such as

O2PLS-DA, even if a simplified classification model based on 27
relevant variables proved to be capable of an adequate discrimi-
nation ofRochefort beers. Complete fingerprinting represents the
only suitable approach to distinguish the different types of
Rochefort beers, most probably because these beers are brewed
according to similar processes using the same ingredients.
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